Skip to Main Content

Feeding Rumen-Bypass Methionine in Transition and Early Lactation Cows

Agricultural business owner inspecting milking carousel system on dairy farm. Cowshed employee checking organic milk production on modern husbandry facility. Robotic technology in farming concept.

 Introduction           

Feeding rumen-protected bypass methionine (RP-Met) in pre-fresh and lactating cow rations is common in the dairy industry. Methionine is considered one of the first two limiting amino acids in modern diets, along with lysine. There is considerable literature on the effects of feeding RP-Met on milk and component production, especially that of milk protein. Many factors impact what effect RP-Met will have on lactating cows, including nutrient makeup of the diet, production level, and management. Rumen-protected amino acid products are typically expensive ingredients and nutrition consultants and dairy managers should consider what response they would need to achieve in order to have a positive return on investment (ROI). Feeding RP-Met to transition and early/mid lactation cows may prove to be a positive investment regardless of milk and component pricing. This article will focus on the benefits of feeding RP-Met to transition cows as well as evaluating these products for lactating cows in general.

Feeding RP-Met to Transition Cows:

The onset of lactation brings large demands for protein and energy, and management and nutrition strategies focusing on transition cows are well-researched topics. Rumen-protected methionine and rumen-protected choline (RP-Chol) products that are often fed to transition cows. These nutrients are involved in different biological pathways but both have a variety of benefits. The major reason for feeding RP-Chol in transition diets is because it is a precursor for phosphatidylcholine, which is needed for the export of fat from the liver, whereas methionine is biologically useful to cows throughout lactation. Both of these products potentially have their places in transition cow programs. This article will focus on RP-Met.

A study by Zhou et al. (2016) looked at the effects of feeding RP-Met to transition cows. Cows were fed either 0g (control) or 13g RP-Met pre-fresh (-21 days) and 0g or 18g RP-Met in the post-fresh (30 days) diets (Table 1). Supplementation of RP-Met increased DMI in both pre- and post-fresh cows compared to the control group. The RP-Met treatment also increased milk yield 6.2 lbs., milk protein concentration and yield by 0.24% and 0.37 lbs., and butterfat concentration and yield by 0.14% and 0.33 lbs. respectively. Overall, energy-corrected milk (ECM) was increased 9.48 lbs. in RP-Met supplemented cows compared to the control group. Toledo et al. (2021) ran a similar study feeding additional RP-Met to both pre- and post-fresh cows at two separate universities and found that there was an overall effect of methionine to increase butterfat concentration by 0.10% and protein concentration and yield by 0.12% and 0.11 lbs. respectively, but had no impact on other production measures or DMI.

The transition period is a critical time for dairy cow health. Although RP-Chol can be a great tool for transition cows, many farms do not have a separate pen for their fresh cows, and RP-Choline does not likely have much biological or economic return after the transition period. Feeding RP-Met can have a significant impact on milk and component production for cows in many stages of lactation. For every pound of milk at peak, cows may increase production by 250 lbs. over the course of their lactation and feeding RP-Met can increase milk and component production for fresh and high-producing cows.

Overall Results Feeding RP-Met

As previously stated, RP-Met is commonly fed to cows of all lactation stages. A meta-analysis of feeding different sources of RP-Met was published by Zanton et al. (2014). Briefly, the impact on DMI and milk production when feeding RP-Met was variable, with some studies reporting slight increases and others small decreases. Authors showed an average of 0.07-0.08% milk protein concentration increase when feeding RP-Met, and milk fat concentration had a numerical increase as well. Increases in milk protein and fat yield showed a lot of variation but overall had positive numerical impact. The data on health events and somatic cell count observed while supplementing RP-Met are inconsistent.

Evaluating RP-Met supplementation is often dependent on many factors including stage of lactation, production level, and nutrient makeup of the diet. Energy-deficient diets may be limited in responses to RP-Met supplementation. Finally, there is a growing body of research showing the importance of amino acids other than methionine and lysine. Research regarding the importance of histidine, leucine, and isoleucine is ongoing. 

Overall Conclusions:

Feeding RP-Met can be a great tool to increase milk protein concentration and yield in cows of all stages of lactation for farms of all sizes. Supplementing RP-Met to transition cows can improve milk and component yield for cows in the first month of lactation. Given the large increase in production from fresh cows, supplementing RP-Met to these groups may be warranted regardless of milk and component prices. Nutrition consultants should rely on ROI calculations when supplementing RP-Met in non-transition lactating cow diets by evaluating the milk and component response. Proper amino acid balance and adequate energy levels have an impact on the response that RP-Met delivers. Finally, there are many RP-Met products on the market, and farms and consultants should be aware of costs, availability, and quality of the products they are selecting. 

Table 1. Overall intake and production responses when supplementing cows with rumen-protected bypass methionine in the pre- and post-fresh periods.

  • *Adaptd from Zhou et al. (2016)
  • 1Treatments were either 0g of RP-Met in both the pre- and post-fresh rations (Control) or 13g and 18g RP-Met in pre- and post-fresh rations, respectively.
  • 2P-values of the overall response of the inclusion of RP-Met
  • 3Energy-corrected milk (ECM) is calculated by ECM = (0.327 x milk yield) + (12.95 x fat yield) + 7.65 x protein yield)
  • 4ECM / DMI is used as a proxy for feed efficiency

References:

  • Toledo, M.Z., M.L. Stangaferro, R.S. Gennari, R. V. Barletta, M.M. Perez, R. Wijma, E.M. Sitko, G. Granados, M. Masello, M.E. Van Amburgh, D. Luchini, J.O. Giordano, R.D. Shaver, and M.C. Wiltbank. 2021. Effects of feeding rumen-protected methionine pre- and postpartum in multiparous Holstein cows: Lactation performance and plasma amino acid concentrations. J. Dairy Sci. 104:7583–7603. doi:10.3168/jds.2020-19021.
  • Zanton, G.I., G.R. Bowman, M. Vázquez-Añón, and L.M. Rode. 2014. Meta-analysis of lactation performance in dairy cows receiving supplemental dietary methionine sources or postruminal infusion of methionine. J. Dairy Sci. 97:7085–7101. doi:10.3168/jds.2014-8220.
  • Zhou, Z., O. Bulgari, E. Trevisi, M.A. Ballou, F.C. Cardoso, and D.N. Luchini. 2016. Rumen-protected methionine compared with rumen-protected choline improves immunometabolic status in dairy cows during the peripartal period. J. Dairy Sci. 99:1–14. doi:10.3168/jds.2016-10986.

Whey Can Increase Protein Levels Without Negatively Impacting Overall Dietary Intake In Older Adults

Sarcopenia – the loss of muscle mass and strength that occurs naturally with aging – can be mitigated by ensuring sufficient protein intake. Reducing the rate of muscle loss is a key factor for maintaining a free and active lifestyle in the advancing years. However, since protein is the most satiating nutrient and appetite diminishes with age, it could be supposed that adding more protein to the diet could lead to an overall reduction in calorie and nutrient intake at a time when they are critical.

While the current UK recommended nutrient intake (RNI) for protein is 0.75g per kg body weight, and the US RNI is 46g for women and 56g for men, other groups have recommended higher levels to be optimal for this group, as shown in the table below.

However, many adults are not achieving their optimal intake, with 36% failing to meet the UK recommendations and a monstrous 85% failing to meet the ESPEN recommendations. Furthermore, protein intake tends to be skewed to the evening, though achieving 25-30g protein at each meal and spreading protein intake throughout the day has been shown to be optimal.

A recent study looked at whether adding a daily whey protein supplement in the form of a gel containing 20g whey protein impacted appetite and overall nutrient intake in 50–75-year-olds. In a cross-over design, Tuttiett et al (2021) also investigated whether there was any impact from having the whey gel in the morning after breakfast, or in the evening before bed.

The researchers found that the addition of a gel did not impact overall appetite or habitual macronutrient intake, i.e. they did not alter the amount of protein, fat and carbohydrate they naturally consumed when excluding the contribution from of protein from the gel. However, the gel did increase overall protein intake.

With regards to the timing of protein supplementation, there was no difference in hunger, satisfaction or eating desire between morning and evening feedings. Since protein intake is typical skewed to the evening, a post-breakfast protein supplement can offer a beneficial strategy to increase protein intake at a time when it is typically low.

Further references and reading:
Department of Health. Dietary Reference Values for Food Energy and Nutrients Report of the Panel on Dietary Reference Values of the Committee on Medical Aspects of Food Policy; Report on Health and Social Subjects 41; HMSO: London, UK, 1991.
Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559.
Paddon-Jones, D.; Rasmussen, B.B. Dietary protein recommendations and the prevention of sarcopenia. Curr. Opin. Nutr. Metab. Care 2010, 12, 86–90.
International Protein Board. Protein Matters: The Need to Re-evaluate the Adequacy and Application of Protein Requirements. https://www.internationalproteinboard.org/protein-matters/protein-requirements.htm

Nutrition Challenges For Aging: The Impact of Protein on Satiety and Energy Intake

The process of aging causes multiple physiological, psychological and social changes that affect food choice and consumption. Advancing age alters food reward signals, reduces food craving behavior, and suppresses appetite and energy intake, all of which contribute to a condition termed the “anorexia of ageing”. Compared with younger adults, older adults are reported to consume approximately 30% less energy per day. Dietary diversity (the number of different foods or food groups consumed over a given reference period) is also attenuated with ageing, with lower consumption of protein reported in older populations. Inadequate regulation of food and protein intake increases the risk of developing conditions such as sarcopenia and osteoporosis. Therefore, protein-energy homeostasis is considered a fundamental dietary-related determinant of healthy aging.

Dietary protein requirements increase with age, attributed partly to an increase in anabolic resistance to muscle protein synthesis (MPS), which accelerates loss of skeletal muscle mass and function. Maintaining muscle mass is essential to protect against falls, which are a leading cause of injury-related mortality in older people and a consequence of anorexia of ageing.

Despite the highly satiating effects of protein, interestingly, evidence suggests that older adults exhibit a blunted satiety response to protein consumption compared with younger adults. In fact, whey protein drinks have been shown to increase short-term total daily energy and protein intake in older people, even when the protein content of the drinks is very high. Another promising strategy for promoting energy and protein consumption in later life is the fortification of foods with protein. Increasing food volume to meet energy requirements is often unachievable in older groups, therefore, increasing energy and protein density while not affecting or reducing portion size, would be beneficial. As it is frequently reported that older adults consume inadequate amounts of protein, supplementing a healthy diet with additional high-quality protein may sufficiently stimulate MPS, without adversely affecting habitual appetite and food intake. However, further studies investigating compliance with long-term protein supplementation and the effects on satiety and energy intake are warranted.    

With the global population ageing (current UN projections expect 1.5 billion people over the age of 65 by 2050), innovative strategies to support protein-energy homeostasis are essential. Adopting a co-production approach involving academia, industry, practitioners and members of the public may stimulate the design of effective nutritional interventions, which consider age-related changes in physiology, cognition and lifestyle that affect appetite and dietary needs and preferences.

Further references and reading:

Bauer, J., Biolo, G., Cederholm, T., Cesari, M., Cruz-Jentoft, A.J., Morley, J.E., Phillips, S., Sieber, C., Stehle, P., Teta, D. and Visvanathan, R., 2013. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. Journal of the American Medical Directors association14(8), pp.542-559.

Dent, E., Hoogendijk, E.O. and Wright, O.R., 2019. New insights into the anorexia of ageing: from prevention to treatment. Current Opinion in Clinical Nutrition & Metabolic Care22(1), pp.44-51. 

Lonnie, M., Hooker, E., Brunstrom, J.M., Corfe, B.M., Green, M.A., Watson, A.W., Williams, E.A., Stevenson, E.J., Penson, S. and Johnstone, A.M., 2018. Protein for life: Review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults. Nutrients10(3), p.360.

Morley, J.E., 1997. Anorexia of aging: physiologic and pathologic. The American journal of clinical nutrition66(4), pp.760-773.

The Proteins in Milk

AUTHOR: LINDSEY ORMOND

Milk contains two main types of proteins – casein and whey. Casein accounts for 80% of the protein in milk, while whey contributes around 20%.

Whey protein is renowned for being a staple in the diet of bodybuilders, which is no surprise given its ability to promote muscle growth and maintenance. However, it is now becoming a key part of mainstreams diets as well, given the unrivaled benefits of high-quality whey proteins.

Whey protein contains all the essential amino acids the human body needs in a form that is rapidly and easily absorbed by the body. Whey protein is particularly high in the branched-chain amino acids (BCAAs), especially leucine. This unique BCAA has been shown to trigger muscle protein synthesis, the process by which the body builds and generates new muscle fibers, which is key for everyone of all ages – not just those wanting to get bigger muscles.

The benefits of whey protein go beyond its ability to support muscle tissue; it has been shown to increase satiety, support weight management,manage blood glucose – both in healthy and pre-diabetic subjects – and even help endurance athletes run faster.

Casein, the main protein in milk protein concentrates and isolates, is also a great source of essential amino acids but is absorbed more slowly by the body (graph source: Boirie, Y, et al. Proc Natl Acad Sci USA 1997). This has the benefit of supplying the body with essential amino acids over a longer period and is why casein or milk protein is often found in overnight recovery products.

Rate of Leucine Absorption From Whey or Casein

HIGH QUALITY PROTEINS IN THE PRODUCTS YOU LOVE

Dairy proteins have long been used in many different applications as they have a long shelf life, can be easily incorporated into products and have a neutral taste. The diversity of applications these proteins can be incorporated into is in part due to the range of ingredients available, many of which have been developed for specific products to meet consumer preferences.

IN CONCLUSION

Dairy proteins provide unparalleled nutritional benefits to help consumers reach their sports performance, weight management, lifestyle, and healthy aging goals. The demand for protein-rich foods and supplements continue to skyrocket, as consumers recognize the benefits of incorporating them into their diet through a variety of applications. Not all proteins are created equal, but for consumers looking for the best source of complete amino acid profiles, dairy proteins are unmatched for nutrition and versatility. Embrace the power of dairy!

Optimizing Sleep with Alpha-lactalbumin 

Alpha-lactalbumin | Man laying down in bed to rest

Sleep is a critical part of our daily routine. We spend about a third of our time doing it and it’s as essential as food and water. Getting sufficient quality and quantity of sleep impacts our day-to-day performance, as well as our long-term health.  

The amount of sleep we need and get reduces with age, from most of a newborn’s day spent with eyes closed, through around 10 hours in preschool and school age, to 7-9 hours for most adults (see figure 1). Older adults tend to need less sleep at around 7-8 hours. However, many adults are not getting their optimal amount and quality of sleep. Between our non-stop world, increasing demands on our time and increased stress and anxiety, it’s no surprise that 50-70million Americans are reported to have sleep or wakefulness disorders (NIH, 2023). It’s even been reported that “undiagnosed sleep apnea alone is estimated to cost the [US] Nation $150 billion annually”. Athletic populations may have a higher level of sleep disturbances due to travel, late night competitions and training commitments.  

Sleep impacts our daily functioning, including reaction time, memory, mood, and physical performance. It is also known to be strongly associated with long term health, with less than 7 hours and more than 9 hours in middle-age being correlated with dementia risk from 70 years of age (Sabia et al, 2023). The same level of under-or over-sleeping has also been reported to potentially increase the risk of metabolic syndrome in young adults aged 18-24 years old (Nutrients | Free Full-Text | The Relationship between Sleep Duration and Metabolic Syndrome Severity Scores in Emerging Adults (mdpi.com)). This may be through the known impact of sleep on metabolic systems, including blood pressure, glucose homeostasis, and hormone regulation.  

Figure 1. Recommended hours of sleep per day by age group 

Tryptophan’s Influence on Sleep 

As an essential amino acid, tryptophan is required in the diet since the human body cannot make it. Tryptophan, one of the amino acids in the diet that can cross the blood-brain barrier, is a precursor to serotonin, a neurotransmitter in the body that influences the sleep-wake cycle, mood, cognitive function and much more. This neurotransmitter is then converted into the hormone, melatonin (see figure 2). The uptake of tryptophan into the brain is also influenced by the level of other amino acids in the diet.  

Figure 2. Tryptophan’s path to enhancing melatonin

Some foods are richer in tryptophan, as highlighted below. Amongst some of the highest dietary sources is the whey protein fraction, alpha-lactalbumin.   

Figure 3. TRP per serving

Alpha-lactalbumin for enhanced sleep and overnight recovery 

Alpha-lactalbumin and tryptophan have been tested for various measures of overnight recovery, sleep quality and quantity, morning wakefulness and cognitive performance. Essentially, it’s been tested to see if it improves sleep and favorably impacts performance the following day.  

Some early work from Hartmann et al (1979) tested 250mg, 500mg or 1g tryptophan supplementation 20minutes before bedtime in those with longer sleep latencies (the time taken to fall asleep) of more than 30minutes. They found that supplementation with 250mg of tryptophan tended to reduce sleep latency and significantly increased the minutes in slow wave sleep.  

Markus et al (2005) found that evening alpha-lactalbumin intake caused a 130% increase in Trp:LNAA before bedtime, and “modestly but significantly reduced sleepiness and improved brain-sustained attention processes the following morning”. Furthermore, in poor sleepers, this was accompanied by improved behavioral performance.  

More recent work looked at whether supplementing semi-professional female rugby union players 2 hours before bed with for the duration of the season impacted any measures of sleep, including total sleep time, sleep efficiency, sleep onset latency and wake after sleep onset (Gratwicke et al, 2023). Alpha was found to reduce sleep onset latency compared to placebo, in particular during bye weeks (weeks with no competition) and during weeks of away games.  

While MacInnes et al did not see an effect of acute alpha-lactalbumin intake in elite or serious recreational cyclist on either sleep quality or performance, this may have been due to the short intervention period.  

Alpha-lactalbumin – more than just a source of tryptophan  

Alpha-lac is the second most abundant fraction in whey protein and, as we know, whey protein has an unrivalled essential and branched-chain amino acid composition, being one of the highest sources of leucine available. While alpha does provide additional leucine compared to a standard whey, this invaluable array of amino acids gives something extra special – high quality protein the muscles and body thrive on.  

While casein or milk protein is most commonly used in overnight recovery products, whey protein was recently shown to be as effective as caseinate for muscle protein synthesis when taken prior to bedtime (Trommelen et al, 2023).  

NutriPRO™ Alpha  

Milk Specialties relentless quest for optimal ingredient solutions led to the addition of alpha-lactalbumin to our portfolio. With a number of product offerings available for multiple applications, please contact us to learn more about how to utilize our ingredient expertise for your products.  

References 

CDC, Sleep and Sleep Disorders, 2023 

Chaudhry et al. Nutrients. 2023;15(4):1046 

Gratwicke et al. Biol Sport. 2023;40(2):449-455 

Hartmann and Spinweber. J Nerv Mental Dis. 1979; 167(8) 

MacInnis et al. Int J Sport Nutr Exerc Metab. 2020;30(3):197-202 

Markus et al. Am J Clin Nutr. 2005;81(5):1026-1033 

NIH, Sleep Science and Sleep Disorders, 2023 

Sabia et al. Nat Commun. 2021;12(1):2289 

Trommelen et al. Sports Med. 2023;10.1007/s40279-023-01822-3.  

Impact of Milk Protein Source on Nutrient Digestibility & Calf Performance

Defining the nutritional and functional differences between skim milk powder and whey protein concentrate and exploring the effects of these milk protein sources on nutrient digestibility and performance in calves.

Young calf in a nursery for cows in a dairy farm. Newborn animal. No peple.

Calf milk replacer (CMR) is fed to a majority of the dairy calves in the United States in place of whole milk because it is often more economical, provides convenience and consistency, and lowers risk of disease transmission from unpasteurized milk. Many CMRs are made exclusively from dairy ingredients due to the calf’s innate ability to efficiently digest, absorb, and utilize the nutrients that naturally exist in ingredients of dairy origin.

Research into products to replace whole milk began in the mid-20th century and primarily utilized casein, skim milk, and whey as protein sources. As reviewed in Kertz et al. (2017), the prevailing thought of the time was that quality of protein within a milk replacer was directly related to the ability of the milk replacer to form a clot in the abomasum, and that poor-quality CMR would not form clots in the abomasum, resulting in diarrhea and reduced calf performance. Given that CMRs formulated with dried skim milk powder (SMP) readily clot in the abomasum due to the presence of casein and CMRs formulated with whey protein concentrate (WPC) do not clot in the abomasum due to the absence of casein, one might assume that CMR formulated with SMP would result in improved health and digestibility in calves. A review by Logenbach and Heinrichs (1998) dispels this myth and states that factors other than clotting are responsible for observed differences in calf performance.

This paper defines the nutritional and functional differences between SMP and WPC and explores the effects of these milk protein sources on nutrient digestibility and performance in calves.

A PRIMER ON MILK PROTEINS

While both WPC and SMP originate from whole milk, they are derived through very different forms of milk processing. Dried WPC is a co-product of the cheesemaking process – liquid whey is separated from curds during the cheesemaking process and subjected to ultrafiltration and drying, resulting in various whey protein concentrates containing 34-80% crude protein. Dried SMP, in contrast, results from the separation of cream from milk for butter manufacturing – the resulting skim milk is dried to produce a 34% crude protein ingredient. A key difference among these ingredients is that SMP contains all proteins found in milk, whereas WPC does not contain casein because casein is utilized in the cheesemaking process. As a result, the amino acid profiles of whey protein and skim milk protein differ slightly.

Historically, skim milk was a prime candidate for inclusion in CMR – it was readily available and inexpensive compared to whole milk. More recently, there has been an emergence of skim milk protein use in human and sports nutrition, which has driven the cost of SMP higher and precluded use of much SMP in modern CMR in the United States. In contrast, whey was long considered a waste product with little to no value. As soon as technology allowed for efficient collection and use of whey proteins, milk replacer manufacturers were quick to adopt WPCs in CMR, and WPC is now one of the most commonly used ingredients in CMR due to its excellent nutritional value, high digestibility, and relatively low cost. Heinrichs et al. (1995) surveyed milk replacer use in the United States and reported that approximately 90% of CMRs sampled did not clot in the presence of rennet, indicating little to no casein-containing ingredient inclusion. Another 8% of CMRs sampled formed only a soft clot, indicating 5% of less of the protein in the CMR being derived from casein-containing ingredients. Only 2% of sampled CMRs formed firm clots in the presence of rennet, suggesting very little usage of casein-based ingredients such as SMP in most CMRs.

RESEARCH ON NUTRIENT DIGESTIBILITY AND CALF PERFORMANCE

Several studies have evaluated nutrient digestibility and calf performance when feeding CMR containing WPC and/or SMP. Terosky et al. (1997) fed calves CMRs containing 0, 33, 66, or 100% of protein from either WPC or SMP through 8 weeks of age and measured calf performance and nutrient digestibility (Table 1). The authors reported no difference in bodyweight gain, average daily gain (ADG), dry matter intake (DMI) or feed efficiency with increasing WPC inclusion. Apparent digestibility also did not differ across treatments. There was also no difference in number of scour days per calf between treatments.

Table 1. Performance and nutrient digestibility in calves fed CMR containing 0,33,66 or 100% of protein as WPC or SMP, Adapted from Terosky et al., 1997.

A study conducted by Lammers et al. (1998) fed diets similar to those above in two trials until 6 weeks of age. Results are shown in Table 2. In the first trial, calves were fed CMR only, and in the second trial, calves were fed CMR plus ad libitum calf starter. When calves were fed CMR only, ADG and feed efficiency were improved with increasing WPC inclusion, and there was no difference in DMI or scour days per calf among treatments. When calves were fed CMR and calf starter, there were no differences in DMI, ADG, feed efficiency, or scour days per calf among treatments.

Table 2. Growth and performance in calves fed CMR containing 0, 33, 67 or 100% of protein as WPC or SMP, Adapted from Lammers et al., 1998.

A more recent study by Marsh and Boyd (2011) reported no difference in weaning weight, 12 week weight, coat bloom score, ADG, DMI, or feed efficiency when Holstein bull calves were fed CMR containing protein from either SMP or WPC. Finally, Petit et al. (1988) sought to determine if clotting ability of CMR affected nutrient digestibility. Calves were fed either a control CMR containing SMP, or the control CMR with added oxalate, an anti-clotting factor that does not denature milk proteins. As shown in Table 3, there was no difference in dry matter, protein, or fat digestibility when calves were fed identical CMR that clotted or did not clot, disproving the notion that CMR quality was linked to ability of CMR to form a clot in the abomasum.

Table 3. Dry matter protein, and fat digestibility in calves fed either clotting or non-clotting CMR containing SMP

Taken as a whole, these data suggest that WPC provides similar digestibility and calf performance to SMP, and that ability of protein to clot in the abomasum is not indicative of nutrient digestibility.

CONCLUSION

While casein-containing ingredients such as skim milk were first on the scene in CMR formulation due to low cost and high availability, they have all but been replaced with more cost-effective whey based protein sources such as WPC. Despite differences in ability of these protein sources to form clots in the abomasum, substituting WPC for SMP has little to no impact on calf performance – nutrient digestibility, intake, calf growth, and feed efficiency are maintained. Whey-based protein sources such as WPC are a cost-effective, ideal ingredient for inclusion in CMR.

MSG Acquires Kay’s Processing, Inc.

Milk Specialties Global (MSG), an industry-leading manufacturer of nutritional ingredients for the health and wellness, performance nutrition and functional food industries, has acquired the 96,000-square-foot, gluten-free certified Kay’s Naturals Processing facility, located in Clara City, Minnesota, along with the Kay’s Naturals consumer brand.

Milk Specialties Global plans to expand operations at the Clara City facility to accommodate demand for extruded protein products, which are used for a wide variety of applications ranging from snacks to meat alternatives. To ensure business continuity, the facility’s current employees have received offers to remain with the facility, and additional jobs will be created in the future to support production expansions. “There is a lot of potential to ramp up production and increase capacity at our new Clara City facility, including more co-manufacturing,” says MSG Vice President of Extrusion Technology and Strategy Jim Fischer. “This acquisition will expand our extruded protein capabilities and help us better meet the needs of our customers.”

The Clara City plant is part of MSG’s long-term expansion strategy. The newly named Milk Specialties Global Clara City Facility is MSG’s 11th plant, and the latest in a series of strategic acquisitions and expansions that began in 2008. Most recently, in 2020 the company doubled its lactose production following expansion of its west coast processing facility in Visalia, CA. Earlier this year, MSG completed a capital improvement project at its Fond Du Lac, WI facility to begin production of lactoferrin, signaling the launch of its NutriPRO™ line of products focusing on the health benefits of whey protein. “MSG has one of the best protein supply chains in the world and great infrastructure for producing high-quality products,” says MSG CEO David Lenzmeier. “With each investment, we can offer more value for our customers.”

Media Note: For additional information or to schedule an interview, contact Media Relations, Inc. at 952-697-5221.

About Milk Specialties Global
Milk Specialties Global (MSG) is an industry-leading manufacturer of nutritional ingredients for the health and wellness, performance nutrition and functional food industries, with manufacturing facilities in WI, MN, NE, IL and CA. The core of MSG’s business is in high-percentage protein ingredients (whey protein concentrates, isolates and hydrolysates, as well as milk protein concentrates, isolates and micellar casein), lactose and permeate as well as value added ingredients. Additional information about Milk Specialties Global, including the benefits of its proprietary processing methods, can be found on www.milkspecialties.com.